Files
casdoor/web/src/common/modal/FaceRecognitionModal.js

324 lines
11 KiB
JavaScript
Raw Normal View History

// Copyright 2024 The Casdoor Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as faceapi from "face-api.js";
import React, {useState} from "react";
import {Button, Modal, Progress, Space, Spin, message} from "antd";
import i18next from "i18next";
import Dragger from "antd/es/upload/Dragger";
import * as Setting from "../../Setting";
const FaceRecognitionModal = (props) => {
const {visible, onOk, onCancel, withImage} = props;
const [modelsLoaded, setModelsLoaded] = React.useState(false);
const [isCameraCaptured, setIsCameraCaptured] = useState(false);
const videoRef = React.useRef();
const canvasRef = React.useRef();
const detection = React.useRef(null);
const mediaStreamRef = React.useRef(null);
const [percent, setPercent] = useState(0);
const [files, setFiles] = useState([]);
const [currentFaceId, setCurrentFaceId] = React.useState();
const [currentFaceIndex, setCurrentFaceIndex] = React.useState();
React.useEffect(() => {
const loadModels = async() => {
// const MODEL_URL = "https://justadudewhohacks.github.io/face-api.js/models";
const MODEL_URL = `${Setting.StaticBaseUrl}/casdoor/models`;
Promise.all([
faceapi.nets.tinyFaceDetector.loadFromUri(MODEL_URL),
faceapi.nets.faceLandmark68Net.loadFromUri(MODEL_URL),
faceapi.nets.faceRecognitionNet.loadFromUri(MODEL_URL),
]).then((val) => {
setModelsLoaded(true);
}).catch((err) => {
message.error(i18next.t("login:Model loading failure"));
onCancel();
});
};
loadModels();
}, []);
React.useEffect(() => {
if (withImage) {
return;
}
if (visible) {
setPercent(0);
if (modelsLoaded) {
navigator.mediaDevices
.getUserMedia({video: {facingMode: "user"}})
.then((stream) => {
mediaStreamRef.current = stream;
setIsCameraCaptured(true);
}).catch((error) => {
handleCameraError(error);
});
}
} else {
clearInterval(detection.current);
detection.current = null;
setIsCameraCaptured(false);
}
return () => {
clearInterval(detection.current);
detection.current = null;
setIsCameraCaptured(false);
};
}, [visible, modelsLoaded]);
React.useEffect(() => {
if (withImage) {
return;
}
if (isCameraCaptured) {
let count = 0;
const interval = setInterval(() => {
count++;
if (videoRef.current) {
videoRef.current.srcObject = mediaStreamRef.current;
videoRef.current.play();
clearInterval(interval);
}
if (count >= 30) {
clearInterval(interval);
onCancel();
}
}, 100);
} else {
mediaStreamRef.current?.getTracks().forEach(track => track.stop());
if (videoRef.current) {
videoRef.current.srcObject = null;
}
}
}, [isCameraCaptured]);
const handleStreamVideo = () => {
if (withImage) {
return;
}
let count = 0;
let goodCount = 0;
if (!detection.current) {
detection.current = setInterval(async() => {
if (modelsLoaded && videoRef.current && visible) {
const faces = await faceapi.detectAllFaces(videoRef.current, new faceapi.TinyFaceDetectorOptions()).withFaceLandmarks().withFaceDescriptors();
count++;
if (count % 50 === 0) {
message.warning(i18next.t("login:Please ensure sufficient lighting and align your face in the center of the recognition box"));
} else if (count > 300) {
message.error(i18next.t("login:Face recognition failed"));
onCancel();
}
if (faces.length === 1) {
const face = faces[0];
setPercent(Math.round(face.detection.score * 100));
const array = Array.from(face.descriptor);
if (face.detection.score > 0.9) {
goodCount++;
if (face.detection.score > 0.99 || goodCount > 10) {
clearInterval(detection.current);
onOk(array);
}
}
} else {
setPercent(Math.round(percent / 2));
}
}
}, 100);
}
};
2024-03-16 09:55:55 +08:00
const handleCameraError = (error) => {
onCancel();
if (error instanceof DOMException) {
if (error.name === "NotFoundError" || error.name === "DevicesNotFoundError") {
message.error(i18next.t("login:Please ensure that you have a camera device for facial recognition"));
} else if (error.name === "NotAllowedError" || error.name === "PermissionDeniedError") {
message.error(i18next.t("login:Please provide permission to access the camera"));
} else if (error.name === "NotReadableError" || error.name === "TrackStartError") {
message.error(i18next.t("login:The camera is currently in use by another webpage"));
} else if (error.name === "TypeError") {
message.error(i18next.t("login:Please load the webpage using HTTPS, otherwise the camera cannot be accessed"));
} else {
message.error(error.message);
}
2024-03-16 09:55:55 +08:00
}
};
const getBase64 = (file) => {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.readAsDataURL(file);
reader.onload = () => resolve(reader.result);
reader.onerror = (error) => reject(error);
});
};
if (!withImage) {
return (
<div>
<Modal
closable={false}
maskClosable={false}
destroyOnClose={true}
open={visible && isCameraCaptured}
title={i18next.t("login:Face Recognition")}
width={350}
footer={[
<Button key="back" onClick={onCancel}>
Cancel
</Button>,
]}
>
<Progress percent={percent} />
<div style={{
marginTop: "20px",
marginBottom: "50px",
justifyContent: "center",
alignContent: "center",
position: "relative",
flexDirection: "column",
}}>
{
modelsLoaded ?
<div style={{display: "flex", justifyContent: "center", alignContent: "center"}}>
<video
ref={videoRef}
onPlay={handleStreamVideo}
style={{
borderRadius: "50%",
height: "220px",
verticalAlign: "middle",
width: "220px",
objectFit: "cover",
}}
></video>
<div style={{
position: "absolute",
width: "240px",
height: "240px",
top: "50%",
left: "50%",
transform: "translate(-50%, -50%)",
}}>
<svg width="240" height="240" fill="none">
<circle
strokeDasharray="700"
strokeDashoffset={700 - 6.9115 * percent}
strokeWidth="4"
cx="120"
cy="120"
r="110"
stroke="#5734d3"
transform="rotate(-90, 120, 120)"
strokeLinecap="round"
style={{transition: "all .2s linear"}}
></circle>
</svg>
</div>
<canvas ref={canvasRef} style={{position: "absolute"}} />
</div>
:
<div>
<Spin tip={i18next.t("login:Loading")} size="large"
style={{display: "flex", justifyContent: "center", alignContent: "center"}}>
<div className="content" />
</Spin>
</div>
}
</div>
</Modal>
</div>
);
} else {
return <div>
<Modal closable={false}
maskClosable={false}
destroyOnClose={true}
open={visible}
title={i18next.t("login:Face Recognition")}
width={350}
footer={[
<Button key="ok" type={"primary"} disabled={!currentFaceId || currentFaceId?.length === 0} onClick={() => {
onOk(Array.from(currentFaceId.descriptor));
}}>
Ok
</Button>,
<Button key="back" onClick={onCancel}>
Cancel
</Button>,
]}>
<Space direction={"vertical"} style={{width: "100%"}}>
<Dragger
multiple={true}
defaultFileList={files}
style={{width: "100%"}}
beforeUpload={(file) => {
getBase64(file).then(res => {
file.base64 = res;
files.push(file);
});
setCurrentFaceId([]);
return false;
}}
onRemove={(file) => {
const index = files.indexOf(file);
const newFileList = files.slice();
newFileList.splice(index, 1);
setFiles(newFileList);
setCurrentFaceId([]);
}}
>
<p>{i18next.t("general:Click to Upload")}</p>
</Dragger >
{
modelsLoaded ? <Button style={{width: "100%"}} onClick={async() => {
let maxScore = 0;
for (const file of files) {
const fileIndex = files.indexOf(file);
const img = new Image();
img.src = file.base64;
const faceIds = await faceapi.detectAllFaces(img, new faceapi.TinyFaceDetectorOptions()).withFaceLandmarks().withFaceDescriptors();
if (faceIds[0]?.detection.score > 0.9 && faceIds[0]?.detection.score > maxScore) {
maxScore = faceIds[0]?.detection.score;
setCurrentFaceId(faceIds[0]);
setCurrentFaceIndex(fileIndex);
}
}
if (maxScore < 0.9) {
message.error(i18next.t("login:Face recognition failed"));
}
2025-03-21 21:03:29 +08:00
}}> {i18next.t("application:Generate Face ID")}</Button> : null
}
</Space>
{
currentFaceId && currentFaceId.length !== 0 ? (
<React.Fragment>
<div>{i18next.t("application:Select")}:{files[currentFaceIndex]?.name}</div>
<div><img src={files[currentFaceIndex]?.base64} alt="selected" style={{width: "100%"}} /></div>
</React.Fragment>
) : null
}
</Modal>
</div>;
}
};
export default FaceRecognitionModal;